Modelling fundamental 2-categories for directed homotopy (*)

نویسنده

  • Marco Grandis
چکیده

Directed Algebraic Topology is a recent field, deeply linked with ordinary and higher dimensional Category Theory. A 'directed space', e.g. an ordered topological space, has directed homotopies (generally non reversible) and fundamental n-categories (replacing the fundamental ngroupoids of the classical case). Finding a simple model of the latter is a non-trivial problem, whose solution gives relevant information on the given 'space'; a problem which is also of interest in general Category Theory, as it requires equivalence relations wider than categorical equivalence. Taking on a previous work on "The shape of a category up to directed homotopy", we study now the fundamental 2category of a directed space. All the notions of 2-category theory used here are explicitly reviewed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Directed Algebraic Topology, Categories and Higher Categories

Directed Algebraic Topology is a recent field, deeply linked with Category Theory. A ‘directed space’ has directed homotopies (generally non reversible), directed homology groups (enriched with a preorder) and fundamental n-categories (replacing the fundamental ngroupoids of the classical case). On the other hand, directed homotopy can give geometric models for lax higher categories. Applicatio...

متن کامل

The Shape of a Category up to Directed Homotopy

This work is a contribution to a recent field, Directed Algebraic Topology. Categories which appear as fundamental categories of ‘directed structures’, e.g. ordered topological spaces, have to be studied up to appropriate notions of directed homotopy equivalence, which are more general than ordinary equivalence of categories. Here we introduce past and future equivalences of categories—sort of ...

متن کامل

Homotopy equivalence of isospectral graphs

In previous work we defined a Quillen model structure, determined by cycles, on the category Gph of directed graphs. In this paper we give a complete description of the homotopy category of graphs associated to our model structure. We endow the categories of N-sets and Z-sets with related model structures, and show that their homotopy categories are Quillen equivalent to the homotopy category H...

متن کامل

Cubical Approximation for Directed Topology

Topological spaces such as classifying spaces, configuration spaces and spacetimes often admit extra directionality. Qualitative invariants on such directed spaces often are more informative, yet more difficult, to calculate than classical homotopy invariants because directed spaces rarely decompose as homotopy colimits of simpler directed spaces. Directed spaces often arise as geometric realiz...

متن کامل

The Directed Homotopy Hypothesis

The homotopy hypothesis was originally stated by Grothendieck [13] : topological spaces should be “equivalent” to (weak) ∞-groupoids, which give algebraic representatives of homotopy types. Much later, several authors developed geometrizations of computational models, e.g. for rewriting, distributed systems, (homotopy) type theory etc. But an essential feature in the work set up in concurrency ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005